Equations
Fronts.DiffusionEquation
— TypeDiffusionEquation(K[; C, sym])
DiffusionEquation{m}(K[; C, sym])
Nonlinear diffusion equation.
Arguments
K
: diffusivity function (ifC
is not given) or conductivity function, defined in terms of the unknown.
Keyword arguments
C=nothing
: optional capacity function, defined in terms of the unknown.sym=:u
: symbol used to represent the unknown function in the output.
Type parameters
m=1
: number of spatial dimensions:- 1 for non-radial one-dimensional diffusion (default);
- 2 for radial diffusion in polar or cylindrical coordinates;
- 3 for radial diffusion in spherical coordinates.
Examples
julia> D(u) = u^4
D (generic function with 1 method)
julia> eq = Fronts.DiffusionEquation(D)
∂u/∂t = ∂(D(u)*∂u/∂r)/∂r
julia> eq = Fronts.DiffusionEquation{2}(D)
∂u/∂t = 1/r*∂(r*D(u)*∂u/∂r)/∂r
julia> eq = Fronts.DiffusionEquation{3}(D, sym=:c)
∂c/∂t = 1/r²*∂(r²*D(c)*∂c/∂r)/∂r
Fronts.diffusivity
— Functiondiffusivity(eq::DiffusionEquation, u)
Diffusivity of eq
with value u
.
diffusivity(prob::InverseProblem) -> Function
Extract a diffusivity function D
from a solution to a semi-infinite one-dimensional nonlinear diffusion problem, where the solution is given as a set of discrete points.
Interpolates the given solution with a PCHIP monotonic spline and uses the Bruce and Klute method to reconstruct D
.
Due to the method used for interpolation, D
will be continuous but will have discontinuous derivatives.
Arguments
prob::InverseProblem
: inverse problem. SeeInverseProblem
.
References
GERLERO, G. S.; BERLI, C. L. A.; KLER, P. A. Open-source high-performance software packages for direct and inverse solving of horizontal capillary flow. Capillarity, 2023, vol. 6, no. 2, p. 31-40.
BRUCE, R. R.; KLUTE, A. The measurement of soil moisture diffusivity. Soil Science Society of America Journal, 1956, vol. 20, no. 4, p. 458-462.
Fronts.conductivity
— Functionconductivity(eq::DiffusionEquation, u)
Conductivity of eq
with value u
.
Fronts.capacity
— Functioncapacity(eq::DiffusionEquation, u)
Capacity of eq
with value u
.