Inverse problems
Fronts.InverseProblem
— TypeInverseProblem(o, u[, weights; i, b, ob])
Problem type for inverse functions and parameter estimation with experimental data.
Arguments
o::AbstractVector
: values of the Boltzmann variable. Seeo
.u::AbstractVector
: observed solution values at each point ino
.weights
: optional weights for the data.
Keyword arguments
i
: initial value, if known.b
: boundary value, if known.ob=0
: value ofo
at the boundary.
See also
diffusivity
, sorptivity
, Fronts.ParamEstim
Fronts.diffusivity
— Methoddiffusivity(prob::InverseProblem) -> Function
Extract a diffusivity function D
from a solution to a semi-infinite one-dimensional nonlinear diffusion problem, where the solution is given as a set of discrete points.
Interpolates the given solution with a PCHIP monotonic spline and uses the Bruce and Klute method to reconstruct D
.
Due to the method used for interpolation, D
will be continuous but will have discontinuous derivatives.
Arguments
prob::InverseProblem
: inverse problem. SeeInverseProblem
.
References
GERLERO, G. S.; BERLI, C. L. A.; KLER, P. A. Open-source high-performance software packages for direct and inverse solving of horizontal capillary flow. Capillarity, 2023, vol. 6, no. 2, p. 31-40.
BRUCE, R. R.; KLUTE, A. The measurement of soil moisture diffusivity. Soil Science Society of America Journal, 1956, vol. 20, no. 4, p. 458-462.
Fronts.sorptivity
— Methodsorptivity(::InverseProblem)
Calculate the sorptivity of a solution to a semi-infinite one-dimensional nonlinear diffusion problem, where the solution is given as a set of discrete points.
Uses numerical integration.
Arguments
prob::InverseProblem
: inverse problem. SeeInverseProblem
.
Keyword arguments
i=nothing
: initial value. Ifnothing
, the initial value is taken fromu[end]
.b=nothing
: boundary value. Ifnothing
, the boundary value is taken fromu[begin]
.ob=0
: value ofo
at the boundary.
References
PHILIP, J. R. The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Science, 1957, vol. 83, no. 5, p. 345-357.